Factors and Factorising

## List the factor pairs of the following numbers.

| 28: $1 \times 28,2 \times 14,4 \times 7$ | $26:$ |
| :--- | :--- |
| $35:$ | $49:$ |
| $81:$ | $50:$ |
| $75:$ | $144:$ |
| Do you notice anything about the square numbers $(49,81$ and 144$)$ that is different from the others? |  |

B Write the factors of the following numbers in $\{\ldots\}$
28: $\{1,2,4,7,14,28\}$
26:
35:
49:
81:
75:
144:
$\{\ldots$ \} are called braces and we use them in both maths and English to contain a set of items that have something in common with each other

C Draw a factor tree for each of the numbers listed below.

## Find possible numbers given the HCF and LCM

There are various answers for these types of question.
$A$ and $B$ are two integers.
The $\operatorname{HCF}(\mathrm{A}, \mathrm{B})=18$ and the $\operatorname{LCM}(\mathrm{A}, \mathrm{B})=648$.

1. Draw a factor tree for the HCF and LCM What could $A$ and $B$ be?

2. The remaining numbers from the LCM can be placed where you like, outside the intersect, in the Venn diagram.
3. Put the factors from the HCF in the intercept section of the Venn diagram.


$$
A=2 \times 2 \times 2 \times 3 \times 3=72
$$

$$
B=2 \times 3 \times 3 \times 3 \times 3=\widehat{162}
$$

 648 108
$\qquad$
5. Multiply the numbers in circle A and then multiply the numbers in circle $B$.

## Using HCF and LCM in algebra

Factorise $8 p^{2} q^{3} r^{5}+36 p^{3} q r^{2}$

$$
\begin{gathered}
8 p^{2} q^{3} r^{5}=2 \times 2 \times 2 \times p \times p \times q \times q \times q \times p \times p \times r \times r \times r \\
36 p^{3} q r^{2}=2 \times 2 \times 3 \times 3 \times p \times p \times p \times q \times \not \times q \times q
\end{gathered}
$$



Factorise $16 x^{2} y^{3} z^{5}+40 x^{3} y z^{2} \quad$ Factorise $18 t^{5} v^{3} w+66 t^{2} w-12$
Factorise $35 c^{5} d^{2} e+75 c^{3} d^{2} \quad$ Factorise $48 k^{2} r+64 k^{5} t-6 t^{2}$

